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µ-BFBT: Key ideas and observations to be presented[
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Incompressible Stokes flow with heterogeneous viscosity
Commonly occurring problem in CS&E:
Creeping non-Newtonian fluid modeled by incompressible Stokes
equations with power-law rheology yields spatially-varying and highly
heterogeneous viscosity µ after linearization.

Here, focus on preconditioning a linearized Stokes problem:
−∇ ·

[
µ(x) (∇u +∇u>)

]
+∇p = f heterogeneous viscosity µ
−∇ · u = 0 seek: velocity u, pressure p

Discretization with inf-sub stable finite elements gives rise to the system:[
Aµ B>
B 0

] [
u
p

]
=
[

f
0

]
Iterative scheme with upper triangular block preconditioning:[
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Severe challenges for parallel scalable solvers
E.g., arising in Earth’s mantle convection:

I Severe nonlinearity, heterogeneity, and
anisotropy of the Earth’s rheology

I Sharp viscosity gradients in narrow regions
(6 orders of magnitude drop in ∼5 km)

I Wide range of spatial scales and highly
localized features, e.g., plate boundaries of
size O(1 km) influence plate motion at
continental scales of O(1000 km)

I Adaptive mesh refinement is essential
I High-order finite elements with local mass

conservation is crucial; yields a difficult to
deal with discontinuous pressure
approximation

Viscosity (colors), surface
velocity at sol. (arrows),
and locally refined mesh.
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This talk’s focus
Methods and preconditioners for the linearized Stokes problem:

I µ-BFBT inverse Schur complement approximation achieves robust
convergence for Stokes problems with highly heterogeneous viscosity

I HMG: hybrid spectral-geometric-algebraic multigrid exhibits extreme
parallel scalability & (nearly) optimal algorithmic scalability, used for
preconditioning viscous block Ã−1

µ and inside µ-BFBT via V-cycles
I Inf-sup stable velocity-pressure discretization Qk × Pdisc

k−1, order k ≥ 2
I Mass conservation at element level via discontinuous, modal pressure

Simplifications are made for the sake of clear analysis and wide
applicability, but solver development targets Earth’s M.C. as application

I Simple viscosity formulation vs. complicated nonlinear Earth rheology
I Undeformed cube domain vs. spherical shell
I Uniformly refined mesh vs. aggressively locally refined
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Class of multi-sinker benchmark problems
Vary 2 viscosity parameters to test robustness:

I Local param.: #sinkers n at random points ci
I Global param.: DR(µ) := max(µ)/min(µ)

µ(x) := (µmax − µmin)(1− χn(x)) + µmin

µmin := DR(µ)−
1
2 , µmax := DR(µ)

1
2

χn(x) :=
n∏

i=1
1− exp

[
−d max

(
0, |ci − x| − w

2

)2
]

f (x) := b(1− χn(x)), (where b, d,w const.)

Vary 2 discretization parameters to test algorithmic
scalability:

I Finite element order k (recall: Qk × Pdisc
k−1)

I Mesh refinement level `

Viscosity (colors) with
highest value (blue)
assumed inside sinkers,
and streamlines of
nonlocal velocity field.
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Propose: µ-BFBT inverse Schur complement approx.[
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Underlying principle of BFBT / Least Squares Commutators (LSC):
find a commutator matrix X s.t. (denote unit vectors by ej)

AµD−1B> −B>X ≈ 0 or min
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Choice of matrices C,D is critical for convergence and robustness.
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(
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) (

BD−1
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)−1

where Cµ = Dµ := M̃u(√µ) are responsible for efficacy and robustness.
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Ãµ B>
0 S̃

]−1 [
u
p

]
=
[

f
0

]
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Robustness of µ-BFBT over established state of the art
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Mp(1/µ) (k = 2, ` = 7)

DR(µ) = . . . 104 106 108 1010

S1-rand 29 31 31 29
S8-rand 64 79 93 165

S16-rand 85 167 231 891
S24-rand 117 286 3279 5983
S28-rand 108 499 2472 >10000

µ-BFBT (k = 2, ` = 7)

DR(µ) = . . . 104 106 108 1010

S1-rand 29 29 29 30
S8-rand 38 40 41 44

S16-rand 40 45 47 48
S24-rand 31 32 39 55
S28-rand 29 31 42 60
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Eigenvalue/-vector analysis for system Sp = g in 2D
Spectrum of exact and preconditioned Schur complement (markers),
#GMRES iter. with eigenvector components of rel. residual > 10−2 (circles/colors)

#sinkers = 4,
DR(µ) = 104,
k = 2, ` = 4
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Modifications for Dirichlet boundary conditions
Consider Ω = R3, µ ≡ 1, then the discrete commutator

AM−1
u B> −B>X

vanishes in infinite dimensions:

0 = (∇ · ∇)∇−∇(∇ · ∇) =: AuB∗ − B∗Ap

However, if Ω is bounded and Dirichlet BC’s are enforced on ∂Ω, then in
general

AuB∗ − B∗Ap 6= 0 on ∂Ω

This poses a problem for algorithmic scalability, i.e., maintained
convergence rate for increasing k and `; similar observations are made in
[Elman, Tuminaro, 2009] for Navier-Stokes equations.
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Modifications for Dirichlet boundary conditions
Recall: S̃−1

µ-BFBT =
(
BC−1

µ B>
)−1 (

BC−1
µ AµD−1

µ B>
) (

BD−1
µ B>

)−1

wµ,a(x) :=
{

a
√
µ(x) x ∈ ΩD,√
µ(x) x /∈ ΩD,

ΩD = elems. touching Dirichlet bdr.

Choose aC ≥ 1 in C−1
µ = M̃u(wµ,aC )−1, aD ≥ 1 in D−1

µ = M̃u(wµ,aD)−1

Interpretation: Reduce weight of ΩD in commutator relationship.

k = 2, ` = 5

aC \ aD 1 2 4 8 16 32

1 33 33 34 34 34 35
2 33 33 34 34 34 34
4 33 34 34 36 38 39
8 34 34 36 39 43 44

16 34 34 38 43 46 49
32 34 34 39 44 49 53

k = 2, ` = 7

aC \ aD 1 2 4 8 16 32

1 45 37 34 34 34 34
2 37 36 35 36 36 36
4 34 36 38 39 40 41
8 34 36 39 42 44 44

16 34 36 40 44 45 46
32 34 36 41 44 46 47
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Modifications for Dirichlet boundary conditions
Recall: S̃−1
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k = 2, ` = 5

aC \ aD 1 2 4 8 16 32

1 33 33 34 34 34 35
2 33 33 34 34 34 34
4 33 34 34 36 38 39
8 34 34 36 39 43 44

16 34 34 38 43 46 49
32 34 34 39 44 49 53

k = 5, ` = 5

aC \ aD 1 2 4 8 16 32

1 63 53 46 43 43 44
2 53 51 51 51 52 53
4 47 51 55 59 62 64
8 44 51 59 65 69 72

16 43 52 62 69 75 78
32 44 53 64 72 78 82
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Algorithmic scalability for HMG+µ-BFBT
pressure space

spectral
p-coarsening
geometric

h-coarsening
algebraic
coars.

discont. modal

cont. nodal
high-order F.E.

trilinear F.E.
decreasing #cores

#cores < 1000
small MPI communicator

single core

p-MG

h-MG

AMG

direct

modal to
nodal proj.
high-order

L2-projection

linear
L2-projection

linear
projection

HMG: hybrid spectral-geometric-algebraic multigrid
I Parallel repartitioning of coarser meshes for load-balancing (crucial for AMR);

sufficiently coarse meshes occupy only subsets of cores
I High-order L2-projection onto coarser levels;

restriction & interpolation are adjoints of each other in L2-sense
I Chebyshev accelerated Jacobi smoother (Cheb. from PETSc) with tensorized

matrix-free high-order stiffness apply; assembly of high-order diagonal only
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Algorithmic scalability for HMG+µ-BFBT
pressure space

spectral
p-coarsening
geometric

h-coarsening
algebraic
coars.

discont. modal

cont. nodal
high-order F.E.

trilinear F.E.
decreasing #cores

#cores < 1000
small MPI communicator

single core

p-MG

h-MG

AMG

direct

modal to
nodal proj.
high-order

L2-projection

linear
L2-projection

linear
projection

` aD u-DOF [×106] It. Aµ p-DOF [×106] It. Kd DOF [×106] It. Stokes

4 1 0.11 18 0.02 8 0.12 40
5 2 0.82 18 0.13 7 0.95 33
6 4 6.44 18 1.05 6 7.49 33
7 8 50.92 18 8.39 6 59.31 34
8 16 405.02 18 67.11 6 472.12 34
9 32 3230.67 18 536.87 6 3767.54 34
10 64 25807.57 18 4294.97 6 30102.53 34
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Algorithmic scalability for HMG+µ-BFBT
pressure space

spectral
p-coarsening
geometric

h-coarsening
algebraic
coars.

discont. modal

cont. nodal
high-order F.E.

trilinear F.E.
decreasing #cores

#cores < 1000
small MPI communicator

single core

p-MG

h-MG

AMG

direct

modal to
nodal proj.
high-order

L2-projection

linear
L2-projection

linear
projection

k aD u-DOF [×106] It. Aµ p-DOF [×106] It. Kd DOF [×106] It. Stokes

2 2 0.82 18 0.13 7 0.95 33
3 4 2.74 20 0.32 8 3.07 37
4 8 6.44 20 0.66 7 7.10 36
5 16 12.52 23 1.15 12 13.67 43
6 32 21.56 23 1.84 12 23.40 50
7 64 34.17 22 2.75 10 36.92 54
8 128 50.92 22 3.93 10 54.86 67
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Weak scalability for HMG+µ-BFBT
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Ideal weak scalability
Solve [DOF/(sec/iter)]
Setup [DOF/sec]

Performed on TACC’s Lonestar 5: Cray XC40 with 1252 compute nodes,
each has 2 Intel Haswell 12-core processors and 64 GBytes of memory.
Extreme scalability for Earth’s M.C. on up to 1.6 million cores of IBM’s BG/Q:
97% weak efficiency [SC’15 Gordon Bell paper: Rudi,Malossi, Isaac et al., 2015]



“µ-BFBT Preconditioner for Stokes Flow Problems” by Johann Rudi

Strong scalability for HMG+µ-BFBT
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Performed on TACC’s Lonestar 5: Cray XC40 with 1252 compute nodes,
each has 2 Intel Haswell 12-core processors and 64 GBytes of memory.
Extreme scalability for Earth’s M.C. on up to 1.6 million cores of IBM’s BG/Q:
32% strong efficiency [SC’15 Gordon Bell paper: Rudi,Malossi, Isaac et al., 2015]
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